45A, 1200V, UFS Series N-Channel IGBT with Anti-Parallel Hyperfast Diode

The HGTG20N120C3D is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. This device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between $25^{\circ} \mathrm{C}$ and $150^{\circ} \mathrm{C}$.
The IGBT is ideal for many high voltage switching applications operating at moderate frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.

The diode used in anti-parallel with the IGBT was formerly developmental type TA49155.

The IGBT diode combination was formerly developmental type TA49264.

Ordering Information

PART NUMBER	PACKAGE	BRAND
HGTG20N120C3D	TO-247	20N120C3D

NOTE: When ordering, use the entire part number.

INTERSIL CORPORATION IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS

$4,364,073$	$4,417,385$	$4,430,792$	$4,443,931$
$4,466,176$	$4,516,143$	$4,532,534$	$4,567,641$
$4,587,713$	$4,598,461$	$4,605,948$	$4,618,872$
$4,620,211$	$4,631,564$	$4,639,754$	$4,639,762$
$4,641,162$	$4,644,637$	$4,682,195$	$4,684,413$
$4,694,313$	$4,717,679$	$4,743,952$	$4,783,690$
$4,794,432$	$4,801,986$	$4,803,533$	$4,809,045$
$4,809,047$	$4,810,665$	$4,823,176$	$4,837,606$
$4,860,080$	$4,883,767$	$4,888,627$	$4,890,143$
$4,901,127$	$4,904,609$	$4,933,740$	$4,963,951$
$4,969,027$			

4,969,027

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified	HGTG20N120C3D	UNITS
Collector to Emitter Voltage . $\mathrm{BV}_{\text {CES }}$	1200	V
Collector Current Continuous		
	45	A
	20	A
Collector Current Pulsed (Note 1) . ICM	160	A
Gate to Emitter Voltage Continuous . V $\mathrm{V}_{\mathrm{GES}}$	± 20	V
Gate to Emitter Voltage Pulsed . V V GEM $^{\text {a }}$	± 30	V
	20 A at 1200 V	
	208	W
Power Dissipation Derating $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$	1.67	W/ ${ }^{\circ} \mathrm{C}$
Reverse Voltage Avalanche Energy . E EARV	100	mJ
Operating and Storage Junction Temperature Range . ${\text { TJ, }{ }^{\text {, }} \text { STG }}^{\text {S }}$	-40 to 150	${ }^{\circ} \mathrm{C}$
Maximum Lead Temperature for Soldering . T_{L}	260	${ }^{\circ} \mathrm{C}$
	8	$\mu \mathrm{s}$
	15	$\mu \mathrm{s}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:

1. Pulse width limited by maximum junction temperature.
2. $\mathrm{V}_{\mathrm{CE}(\mathrm{PK})}=720 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{GE}}=3 \Omega$.

Electrical Specifications $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNITS
Collector to Emitter Breakdown Voltage	$B V_{\text {CES }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$		1200	-	-	V
Collector to Emitter Leakage Current	ICES	$\mathrm{V}_{\text {CE }}=B \mathrm{~V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	-	150	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	-	2.0	mA
Collector to Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 110}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	-	2.4	3.0	V
			$\mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}$	-	2.2	2.9	V
Gate to Emitter Threshold Voltage	$\mathrm{V}_{\mathrm{GE} \text { (TH) }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$		5.0	7.0	7.5	V
Gate to Emitter Leakage Current	$I_{\text {GES }}$	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$		-	-	± 250	nA
Switching SOA	SSOA	$\begin{aligned} & \mathrm{T}_{J}=150^{\circ} \mathrm{C}, \\ & \mathrm{R}_{\mathrm{G}}=3 \Omega, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \\ & \mathrm{~L}=100 \mu \mathrm{H}, \end{aligned}$	$\mathrm{V}_{\mathrm{CE}}(\mathrm{PK})=960 \mathrm{~V}$	60	-	-	A
			$\mathrm{V}_{\text {CE (PK) }}=1200 \mathrm{~V}$	20	-	-	A
Gate to Emitter Plateau Voltage	$\mathrm{V}_{\mathrm{GEP}}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 110}, \mathrm{~V}_{\text {CE }}=0.5 \mathrm{BV} \mathrm{CES}$		-	9.4	-	V
On-State Gate Charge	$\mathrm{Q}_{\mathrm{G}(\mathrm{ON})}$	$\begin{aligned} & I_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 110}, \\ & \mathrm{~V}_{\mathrm{CE}}=0.5 \mathrm{BV} \end{aligned}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	-	93	130	nC
			$\mathrm{V}_{\mathrm{GE}}=20 \mathrm{~V}$	-	186	230	nC
Current Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \mathrm{l}}$	IGBT and Diode at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ $I_{C E}=I_{C 110}$ $\mathrm{V}_{\mathrm{CE}}=0.8 \mathrm{BV}$ CES $\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$ $\mathrm{R}_{\mathrm{G}}=3 \Omega$ $\mathrm{L}=1 \mathrm{mH}$ Test Circuit - (Figure 19)		-	39	-	ns
Current Rise Time	$\mathrm{trl}_{\mathrm{rl}}$			-	22	-	ns
Current Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$			-	110	-	ns
Current Fall Time	t_{fl}			-	95	-	ns
Turn-On Energy (Note 4)	EON1			-	950	-	$\mu \mathrm{J}$
Turn-On Energy (Note 4)	EON2			-	2250	-	$\mu \mathrm{J}$
Turn-Off Energy (Note 3)	EOFF			-	1200	2400	$\mu \mathrm{J}$

Electrical Specifications $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Current Turn-On Delay Time	$t_{d}(\mathrm{ON})$ I	IGBT and Diode at $\mathrm{T}_{J}=150^{\circ} \mathrm{C}$ $I_{C E}=I_{C 110}$ $\mathrm{V}_{\mathrm{CE}}=0.8 \mathrm{~B} \mathrm{~V}_{\mathrm{CES}}$ $\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$ $\mathrm{R}_{\mathrm{G}}=3 \Omega$ $\mathrm{L}=1 \mathrm{mH}$ Test Circuit - (Figure 19)	-	39	-	ns
Current Rise Time	tr_{r}		-	20	-	ns
Current Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		-	360	550	ns
Current Fall Time	tfl		-	300	400	ns
Turn-On Energy (Note 4)	EON1		-	950	-	$\mu \mathrm{J}$
Turn-On Energy (Note 4)	EON2		-	3365	-	$\mu \mathrm{J}$
Turn-Off Energy (Note 3)	EOFF		-	4400	8000	$\mu \mathrm{J}$
Diode Forward Voltage	V_{EC}	$\mathrm{I}_{\mathrm{EC}}=20 \mathrm{~A}$	-	2.6	3.4	V
Diode Reverse Recovery Time	$t_{\text {rr }}$	$\mathrm{l}_{\mathrm{EC}}=1 \mathrm{~A}, \mathrm{dl}_{\mathrm{EC}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	-	50	ns
		$\mathrm{I}_{\mathrm{EC}}=20 \mathrm{~A}, \mathrm{dl}_{\mathrm{EC}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	-	70	ns
Thermal Resistance Junction To Case	$\mathrm{R}_{\text {өJC }}$	IGBT	-	-	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Diode	-	-	1.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

3. Turn-Off Energy Loss (EOFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero ($\mathrm{I}_{\mathrm{CE}}=0 \mathrm{~A}$). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.
4. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. E EN 1 is the turn-on loss of the IGBT only. EON2 is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same T_{J} as the IGBT. The diode type is specified in Figure 19.

Typical Performance Curves (Unless Otherwise Specified)

FIGURE 1. DC COLLECTOR CURRENT vs CASE TEMPERATURE

FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA

Typical Performance Curves (Unless Otherwise Specified) (Continued)

FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO EMITTER CURRENT

FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE

FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO EMITTER CURRENT

FIGURE 4. SHORT CIRCUIT WITHSTAND TIME

FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE

FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO EMITTER CURRENT

Typical Performance Curves (Unless Otherwise Specified) (Continued)

FIGURE 9. TURN-ON DELAY TIME vs COLLECTOR TO EMITTER CURRENT

FIGURE 11. TURN-OFF DELAY TIME vs COLLECTOR TO EMITTER CURRENT

FIGURE 13. TRANSFER CHARACTERISTIC

FIGURE 10. TURN-ON RISE TIME vs COLLECTOR TO EMITTER CURRENT

FIGURE 12. FALL TIME vs COLLECTOR TO EMITTER CURRENT

FIGURE 14. GATE CHARGE WAVEFORMS

Typical Performance Curves (Unless Otherwise Specified) (Continued)

FIGURE 15. CAPACITANCE vs COLLECTOR TO EMITTER VOLTAGE

FIGURE 16. NORMALIZED TRANSIENT THERMAL RESPONSE, JUNCTION TO CASE

FIGURE 17. DIODE FORWARD CURRENT vs FORWARD VOLTAGE DROP

FIGURE 18. RECOVERY TIMES vs FORWARD CURRENT

Test Circuit and Waveforms

FIGURE 19. INDUCTIVE SWITCHING TEST CIRCUIT

FIGURE 20. SWITCHING TEST WAVEFORMS

Handling Precautions for IGBTs

Insulated Gate Bipolar Transistors are susceptible to gateinsulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler's body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:

1. Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as "ECCOSORBDTM LD26" or equivalent.
2. When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means - for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from circuits with power on.
5. Gate Voltage Rating - Never exceed the gate-voltage rating of $\mathrm{V}_{\mathrm{GEM}}$. Exceeding the rated V_{GE} can result in permanent damage to the oxide layer in the gate region.
6. Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate opencircuited or floating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.
7. Gate Protection - These devices do not have an internal monolithic Zener diode from gate to emitter. If gate protection is required an external Zener is recommended.

Operating Frequency Information

Operating frequency information for a typical device (Figure 3) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (ICE) plots are possible using the information shown for a typical unit in Figures 5, 6, 7, 8, 9 and 11. The operating frequency plot (Figure 3) of a typical device shows $f_{\text {MAX }}$ or $f_{\text {MAX2 }}$; whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.
${ }^{\mathrm{f}_{\text {MAX }}}$ is defined by $\mathrm{f}_{\text {MAX }}=0.05 /\left(\mathrm{t}_{\mathrm{d}(\mathrm{OFF})}{ }^{\prime}+\mathrm{t}_{\mathrm{d}(\mathrm{ON})}\right)$. Deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. $\mathrm{t}_{\mathrm{d}(\mathrm{OFF})!}$ and $\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \text { I }}$ are defined in Figure 20 . Device turn-off delay can establish an additional frequency limiting condition for an application other than $\mathrm{T}_{\mathrm{JM}} \cdot \mathrm{t}_{\mathrm{d}(\mathrm{OFF}) \text { I }}$ is important when controlling output ripple under a lightly loaded condition.
$f_{\text {MAX2 }}$ is defined by $f_{\text {MAX2 }}=\left(\mathrm{PD}_{\mathrm{D}}-\mathrm{P}_{\mathrm{C}}\right) /\left(\mathrm{E}_{\mathrm{OFF}}+\mathrm{E}_{\mathrm{ON} 2}\right)$. The allowable dissipation $\left(P_{D}\right)$ is defined by $P_{D}=\left(T_{J M}-T_{C}\right) / R_{\theta J C}$. The sum of device switching and conduction losses must not exceed P_{D}. A 50% duty factor was used (Figure 3) and the conduction losses (P_{C}) are approximated by
$\mathrm{P}_{\mathrm{C}}=\left(\mathrm{V}_{\mathrm{CE}} \times \mathrm{I}_{\mathrm{CE}}\right) / 2$.
$\mathrm{E}_{\mathrm{ON} 2}$ and $\mathrm{E}_{\mathrm{OFF}}$ are defined in the switching waveforms shown in Figure 20. $\mathrm{E}_{\mathrm{ON} 2}$ is the integral of the instantaneous power loss ($\mathrm{I}_{\text {CE }} \times \mathrm{V}_{\text {CE }}$) during turn-on and $\mathrm{E}_{\text {OFF }}$ is the integral of the instantaneous power loss (${ }^{\text {CE }} \times \mathrm{V}_{\text {CE }}$) during turn-off. All tail losses are included in the calculation for $\mathrm{E}_{\mathrm{OFF}}$; i.e., the collector current equals zero ($\mathrm{l}_{\mathrm{CE}}=0$).

TO-247

3 LEAD JEDEC STYLE TO-247 PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.180	0.190	4.58	4.82	-
b	0.046	0.051	1.17	1.29	2,3
$\mathrm{~b}_{1}$	0.060	0.070	1.53	1.77	1,2
$\mathrm{~b}_{2}$	0.095	0.105	2.42	2.66	1,2
c	0.020	0.026	0.51	0.66	$1,2,3$
D	0.800	0.820	20.32	20.82	-
E	0.605	0.625	15.37	15.87	-
e	0.219 TYP		5.56 TYP		4
e_{1}	0.438		BSC	11.12 BSC	
J_{1}	0.090	0.105	2.29	2.66	5
L	0.620	0.640	15.75	16.25	-
L_{1}	0.145	0.155	3.69	3.93	1
$\varnothing \mathrm{OP}$	0.138	0.144	3.51	3.65	-
Q	0.210	0.220	5.34	5.58	-
$\varnothing R$	0.195	0.205	4.96	5.20	-
$\varnothing S$	0.260	0.270	6.61	6.85	-

NOTES:

1. Lead dimension and finish uncontrolled in L_{1}.
2. Lead dimension (without solder).
3. Add typically 0.002 inches $(0.05 \mathrm{~mm})$ for solder coating.
4. Position of lead to be measured 0.250 inches $(6.35 \mathrm{~mm})$ from bottom of dimension D.
5. Position of lead to be measured 0.100 inches $(2.54 \mathrm{~mm})$ from bottom of dimension D.
6. Controlling dimension: Inch.
7. Revision 1 dated 1-93.

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters

NORTH AMERICA

Intersil Corporation
P. O. Box 883, Mail Stop 53-204

Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240

EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 227169310
FAX: (886) 227153029

